Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang Chao Zeng,* Li Hong Li and Ying Zhou Cen

Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China

Correspondence e-mail: xczeng@126.com

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.029$
$w R$ factor $=0.073$
Data-to-parameter ratio $=8.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(S)-Methyl 2-[(furan-2-carbonyl)amino]-3-phenylpropanoate

The title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$, was synthesized by acylation of methyl L-2-amino-3-phenylpropanoate with furan-2carbonyl chloride at room temperature. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into extended chains parallel to the b axis.

Comment

Furan derivatives are well known in many marine organisms (Faulkner, 2001), and some have important bioactivities, such as antitumor activity (Phuwapraisirsan et al., 2004) and diabetes treatment activity (Hwang et al., 2002). In our search for bio-active compounds, a series of furan-2-carboxamido acids and their esters, including the title compound, (I), have been synthesized by reaction of amino acid esters with furan-2-carbonyl chloride. We report here the crystal structure of (I).

(I)

Bond lengths and angles are unexceptional and are in good agreement with the corresponding values in methyl 2-(4,5-dibromo-1-methylpyrrole-2-carbonylamino)-3-phenylpropanoate (Zeng et al., 2006) and 4-[(furan-2-ylmethylene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (Li et al., 2005).

In the crystal structure, molecules are connected by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 1), generating chains running parallel to the b axis (shown in Fig. 2).

Experimental

Methyl L-2-amino-3-phenylpropanoate hydrochloride (1.08 g, 5 mmol) was added to dichloromethane (6 ml), followed by the addition of triethylamine $(1.5 \mathrm{ml})$; after stirring for 15 min , the precipitate was filtered off. Furan-2-carbonyl chloride $(0.5 \mathrm{ml}$, 5 mmol) in dichloromethane (3 ml) was added to the filtrate dropwise at $288-293 \mathrm{~K}$. The mixture reacted at room temperature for 2 h and was then filtered; the filtrate was collected and washed with water
\qquad
$(5 \mathrm{ml})$. The organic phase was dried with anhydrous sodium sulfate overnight and the solvent removed by distillation under reduced pressure. The pale brown solid residue was dissolved in 95% ethanol at room temperature. Colorless crystals suitable for X-ray analysis (m. p. 345 K , in 84.2% yield) grew over a period of 7 days when the solution was exposed to air.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=273.28$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=8.5817$ (12) \AA
$b=8.9505(14) \AA$
$c=18.375$ (3) \AA
$V=1411.4(4) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.48 \times 0.46 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.870, T_{\text {max }}=0.971$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.073$
$S=1.07$
1612 reflections
184 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0353 P)^{2}\right. \\
\quad \\
\quad+0.265 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.042(3)
\end{array}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.12	$2.930(2)$	154

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=1.00 \AA$ for CH , $\mathrm{C}-\mathrm{H}=0.99 \AA$ for $\mathrm{CH}_{2}, 0.98 \AA$ for $\mathrm{CH}_{3}, 0.95 \AA$ for CH (aromatic), and $\mathrm{N}-\mathrm{H}=0.88 \AA$] and refined using a riding model, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for the methyl group) of the parent atom. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Dr Xiao-Long Feng and Dr Long Jiang, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, China, for their help in the data collection. The project was supported by the Natural Science Foundation of Guangdong Province, China (No. 039213).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of (I), showing the hydrogen-bonded dashed lines) chains.

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Faulkner, D. J. (2001). Nat. Prod. Rep. 18, 1-49.
Hwang, B. Y., Lee, J. H., Nam, J. B., Kim, H. S., Hong, Y. S. \& Lee, J. J. (2002). J. Nat. Prod. 65, 616-617.
Li, Z. X. \& Zhang, X. L. (2005). Chin. J. Struct. Chem. 24, 1310-1313.
Phuwapraisirsan, P., Matsunaga, S., Soest, R. W. M. V. \& Fusetani, N. (2004). Tetrahedron Lett. 45, 2125-2127.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zeng, X. C., Gu, J., Xu, S. H. \& Liu, P. R. (2006). Chin. J. Struct. Chem. 25, $153-$ 158.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

